Inorg. Chem. 2004, 43, 6537-6539

Inorganic Chemistry

Cu(I) β -Diketiminates for Alkene Aziridination: Reversible Cu—Arene Binding and Catalytic Nitrene Transfer from PhI=NTs

LaTasha D. Amisial, Xuliang Dai, R. Adam Kinney, Ammani Krishnaswamy, and Timothy H. Warren* Department of Chemistry, Box 571227, Georgetown University, Washington, D.C. 20057 Received July 30, 2004

β-Diketiminato Cu(I)–lutidine complexes [RMeNN]Cu(2,4-lutidine) (R = Me (4a), ⁱPr (4b)) were prepared in high yield from TI[RMeNN] and [CuBr(2,4-lutidine)₂]₂. Both 4a and 4b reversibly dissociate lutidine base in toluene to give [RMeNN]Cu(toluene) solvento complexes. A related base-free dicopper species {[Me₂NN]Cu}₂ (6) bridged via η²-binding of opposing *N*-aryl rings could be isolated by the addition of TI[Me₂NN] to CuBr. The lutidine precursors serve as precatalysts for the aziridination of alkenes with PhI=NTs. Styrene, β-methylstyrene, and cyclooctene gave the highest yields (59–96%) with a low olefin to PhI=NTs ratio (3:1) and 5 mol % catalyst loading.

Since Kwart and Kahn's seminal discovery in 1967 that copper promoted the decomposition of benzenesulfonyl azide to give aziridines in the presence of alkenes,¹ copper complexes have held prominence in metal-catalyzed aziridination. A wide variety of chelating *N*-donor ligands with Cu(I) and Cu(II) salts catalyze the aziridination of alkenes with the imidoiodane PhI=NTs,^{2–7} the most commonly used nitrene transfer reagent. Variants employing chiral bis-(oxazolines)² or related chiral diimine ligands³ can give enantioselectivities as high as 98% ee.⁸

In addition to expanding the range of useful nitrene transfer reagents to allow the incorporation of more diverse Nsubstituents, a challenge in catalytic aziridination remains the development of systems that do not require a large excess

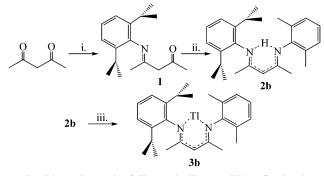
- (1) (a) Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1950. (b) Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951.
- (2) (a) Evans, D. A.; Faul, M. M.; Bildeau, M. T. J. Org. Chem. 1991, 56, 6744. (b) Evans, D. A.; Faul, M. M.; Bildeau, M. T. J. Am. Chem. Soc. 1993, 115, 5328. (c) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.
- (3) (a) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326. (b) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117 (7), 5889. (c) Adam, W.; Roschmann, K. J.; Saha-Möller, C. R. Eur. J. Org. Chem. 2000, 557. (d) Brandt, P.; Södergren, M. J.; Andersson, P. G.; Norrby, P.-O. J. Am. Chem. Soc. 2000, 122, 8013. (e) Sanders, C. J.; Gillespie, K. M.; Bell, D.; Scott, P. J. Am. Chem. Soc. 2000, 122, 7132. (f) Gillespie, K. M.; Crust, E. J.; Deeth, R. J.; Scott, P. Chem. Commun. 2001, 785.
- (4) (a) Handy, S.; Czopp, M. Org. Lett. 2001, 3, 1423. (b) Díaz-Requejo, M. M.; Pérez, P. J.; Brookhart, M.; Templeton, J. L. Organometallics 1997, 16, 4399. (c) Pérez, P. J.; Brookhart, M.; Templeton, J. L. Organometallics 1993, 12, 261. (d) Díaz-Requejo, M. M.; Pérez, P. J. J. Organomet. Chem. 2001, 617–618, 110.

10.1021/ic048968+ CCC: \$27.50 © 2004 American Chemical Society Published on Web 09/21/2004

of alkene.⁹ In cases where the alkene is valuable or difficult to separate from the aziridine product, the 10–100-fold excess of alkene used with most catalysts becomes impractical. Copper catalysts employing monoanionic ligands such as bis- or tris(pyrazolyl)borates are promising,^{4,7} such as the recent report of alkene/PhI=NTs ratios as low as 1:1 in the aziridination of styrene, cyclooctene, and 1-hexene with electron-poor tris(pyrazolyl)borates.^{6,7}

We are attracted to monoanionic β -diketiminates in copper-catalyzed aziridination due to the steric and electronic tunability these ancillary ligands afford via modifications to the *N*-aryl and backbone substituents.¹⁰ Our recent isolation of the three-coordinate β -diketiminato Co¹¹ and Ni¹² complexes [NN]M=NAd has further piqued our interest in Cu-(I) β -diketiminates¹³⁻¹⁷ for aziridination, as species with M= NR groups have been long proposed as active intermediates in metal-catalyzed aziridination.^{2c,3b,f}

Two slightly different β -diketiminate ligands were explored in this investigation. The first is the symmetric β -diketiminate [Me₂NN]⁻ possessing two 2,6-dimethylphenyl


- (5) (a) Vedernikov, A. N.; Caulton, K. G. Org. Lett. 2003, 5, 2591. (b) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165. (c) Halfen, J. A.; Fox, D. C.; Mehn, M. P.; Que, L. J. Inorg. Chem. 2001, 40, 5060. (d) Halfen, J. A.; Hallman, J. K.; Schultz, J. A.; Emerson, J. P. Organometallics 1999, 18, 5435. (e) Halfen, J. A.; Uhan, J. M.; Fox, D. C.; Mehn, M. P.; Que, L. J. Inorg. Chem. 2000, 39, 4913. (f) Bertilsson, S. K.; Tedenborg, L.; Alonso, D. A.; Andersson, P. C. Organometallics 1999, 18, 1281.
 (6) Dias, H. V. R.; Lu, H.-L.; Kim, H.-J.; Polach, S. A.; Goh, T. K. H.
- (6) Dias, H. V. R.; Lu, H.-L.; Kim, H.-J.; Polach, S. A.; Goh, T. K. H. H.; Browning, R. G.; Lovely, C. J. Organometallics 2002, 21, 1466.
- (7) Mairena, M. A.; Díaz-Requejo, M. M.; Belderraín, T. R.; Nicasio, M. C.; Trofimenko, S.; Pérez, P. J. Organometallics 2004, 23, 253.
- (8) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905.
- (9) Guthikonda, K.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 13672.
- (10) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev. 2002, 102, 3031.
- (11) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798
- (12) Kogut, E.; Wiencko, H. L.; Zhang, L.; Warren, T. H. J. Am. Chem. Soc., submitted for publication.
- (13) Dai, X.; Warren, T. H. Chem. Commun. 2001, 1998.
- (14) Some of this work has been presented: Amisial, L. D.; Dai, X.; Warren, T. H. Abstracts of Papers, 224th National Meeting of the American Chemical Society, Boston, MA, Aug 18–22, 2002; INOR 403.
- (15) (a) Spencer, D. J. E.; Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.; Tolman, W. B. *J. Am. Chem. Soc.* 2002, *124*, 2108. (b) Aboelella, N. W.; Lewis, E. A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W. B. *J. Am. Chem. Soc.* 2002, *124*, 10660. (c) Spencer, D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazdzewski, B. A.; Duboc-Toia, C.; Le Pape, L.; Yokota, S.; Tachi, Y.; Itoh, S.; Tolman, W. B. *Inorg. Chem.* 2002, *41*, 6307. (d) Lee, W.-Z.; Tolman, W. B. *Inorg. Chem.* 2002, *41*, 5656.

Inorganic Chemistry, Vol. 43, No. 21, 2004 6537

 $[\]ast$ To whom correspondence should be addressed. E-mail: thw@ georgetown.edu.

COMMUNICATION

Scheme 1. Synthesis of the Unsymmetric β -Diketiminates **2b** and **3b**^{*a*}

^{*a*} Conditions: (i) 1 equiv of diisoproylaniline, cat. TSA, reflux in toluene 3 h; (ii) 1.5 equiv of dimethylaniline, 1 equiv of TSA, reflux toluene 6 h, Na₂CO₃ workup; (iii) KH in THF, then TlOAc.

N-aryl substituents. We recently reported the Cu(I)-alkene adduct [Me₂NN]Cu(η^2 -ethylene) of this ligand which was found to cleave dioxygen¹³ as well as react with N₂CPh₂ to give the structurally characterized dicopper carbene {[Me2NN]- $Cu_{2}(\mu$ -CPh₂) that is reactive toward alkene cyclopropanation.¹⁸ The second ligand we used derives from the new β -diketimine H[^{*i*}PrMeNN] (2b) prepared in a two-step process (Scheme 1). Condensation of 1 equiv of 2,6diisopropylaniline with 2,4-pentanedione under acid catalysis afforded the corresponding iminoketone 1 as an oil. Further condensation of crude 1 with 1.5 equiv of 2,6-dimethylaniline and 1.0 equiv of toluenesulfonic acid allowed the isolation of H[ⁱPrMeNN] (2b) in 61% overall yield after basic workup. A thallium(I) derivative was prepared by deprotonation in THF by KH followed by reaction with TlOAc to give Tl[^{*i*}PrMeNN] (**3b**) in 77% yield.¹³

Although scouting reactions indicated that $[Me_2NN]Cu$ -(ethylene) catalyzes the aziridination of styrene with PhI=NTs, a Cu catalyst precursor lacking any olefin was desired to eliminate contamination of the alkene substrate. Addition of TI[RMeNN] (R = Me (**3a**), ^{*i*}Pr (**3b**)) to 0.5 equiv of {CuBr-(2,4-lutidine)₂}₂¹⁹ (prepared by addition of anhydrous copper(I) bromide to excess 2,4-lutidine with heating) in toluene results in the immediate precipitation of TlBr and isolation of [RMeNN]Cu(2,4-lutidine) (R= Me (**4a**); ^{*i*}Pr (**4b**)) as yellow crystals from pentane in 87% and 85% yields, respectively (eq 1).

Tl[RMeNN] + 0.5 [CuBr(2,4-lut) ₂] ₂	toluene	[RMeNN]Cu(2,4-lut) (1)
$\mathbf{R} = \mathbf{Me} \ (\mathbf{3a})$	- TlBr - 2,4-lut	R = Me(4a)
$\mathbf{R} = {}^{\mathbf{i}}\mathbf{P}\mathbf{r} \ (\mathbf{3b})$	2,1 141	$\mathbf{R} = {}^{\mathbf{i}}\mathbf{P}\mathbf{r} \ (\mathbf{4b})$

The X-ray crystal structures of **4a** and **4b** revealed threecoordinate copper centers in which the 2,4-lutidine ligand is sandwiched between two β -diketiminato *N*-aryl groups (Figure 1). The most striking feature in these structures is the considerable "bending" of the lutidine toward one *N*-aryl ring such that the N1–Cu–N3 angle (145.80(6)° [**4a**] and

 $146.44(18)^{\circ}$ [4b]) is considerably more obtuse that the N2-Cu-N3 angle (114.93(6)° [4a] and 115.85(17)° [4b]). This is also reflected in the Cu-N1 bond (1.912(2) Å [4a] and 1.923(4) Å [4b]) and Cu-N2 bond (1.987(2) Å [4a] and 1.985(4) Å [4b]) distances that indicate unsymmetric chelation of the β -diketiminate ancillary ligand. These parameters stand in contrast to the symmetrically chelated [ⁱPr₂NN]Cu(py) possessing two *o*-ⁱPr substituted *N*-aryl rings which exhibits a coplanar orientation of the pyridine ring with the β -diketiminate backbone.^{15d} In both **4a** and **4b**, the lutidine ring is twisted away from the plane of the β -diketiminato chelate, and the "bent" trigonal geometry likely results from repulsions between the lutidine o-Me group and one N-aryl ring. In agreement, DFT calculations on a simplified system indicate a soft potential for bending of a pyridine ligand in the absence of steric effects.

The ¹H NMR spectrum of **4a** at -80 °C in toluene- d_8 reveals only one Ar–Me resonance at δ 2.425 ppm, indicating that rotation about the Cu–lutidine bond and/or lutidine dissociation/reassociation is still fast on the NMR time scale at this temperature. As the temperature is increased, the lutidine *o*-H resonance in **4a** shifts from δ 7.407 ppm at -80 °C to δ 7.589 ppm at 70 °C. Since this signal appears at δ 8.319 ppm for free lutidine in toluene- d_8 , this suggests that an increasing equilibrium amount of free lutidine is formed with increasing temperature. Similar behavior is observed in VT ¹H NMR spectra of **4b**; the lutidine *o*-H resonance moves downfield from δ 7.159 ppm at -60 °C to δ 7.384 ppm at 80 °C.

Assuming that lutidine is not appreciably dissociated at the low-temperature limit, the equilibrium constant K_{eq} for lutidine dissociation from **4a** and **4b** can be derived from the lutidine *o*-H ¹H NMR chemical shift. van't Hoff plots of ln K_{eq} versus 1/*T* over a wide temperature range (ca. -70 to 70 °C) allowed for the determination of ΔH (2.3(3) and 5.6(3) kcal/mol) and ΔS (3(1) and 7(1) cal/mol·K) for the dissociation of lutidine from **4a** and **4b**, respectively (Figures S1 and S2). The low ΔH and ΔS values suggest that a molecule of toluene- d_8 solvent likely coordinates to the Cucenter in the lutidine-free form (eq 2).

[RMeNN]Cu(2,4-lut) $=$	[RMeNN]Cu(toluene) + 2,4-lut	(2)
$\mathbf{R} = \mathbf{Me} (\mathbf{4a})$	$\mathbf{R} = \mathbf{Me} \ (\mathbf{5a})$	
$R = {}^{i}Pr$ (4b)	$R = {}^{i}Pr$ (5b)	

A related lutidine-free complex { $[Me_2NN]Cu$ }₂ (6) could be isolated in moderate yield by chemical removal of lutidine from **3a** with BF₃•OEt₂ in pentane, or, more conveniently, via the addition of Tl[Me₂NN] to CuBr in toluene followed by crystallization from pentane in 53% yield. The asymmetric unit in the X-ray structure of **6** (Figure 1) consists of 1.5 molecules of { $[Me_2NN]Cu$ }₂ of which one set of bridged [Me₂NN]Cu fragments is related by inversion. (Disorder in 3 of the 6 unique *N*-aryl rings is observed.) Complementary η^2 -arene interactions with an opposing *N*-aryl group link each

⁽¹⁶⁾ Laitar, D. S.; Mathison, C. J. N.; Davis, W. M.; Sadighi, J. P. Inorg. Chem. 2003, 42, 7354.

^{(17) (}a) Yokota, S.; Tachi, Y.; Nishiwaki, N.; Ariga, M.; Itoh, S. *Inorg. Chem.* 2001, 40, 5316. (b) Brown, E. C.; Aboelella, N. W.; Reynolds, A. M.; Aullón, G.; Alvarez, S.; Tolman, W. B. *Inorg. Chem.* 2004, 43, 3335.

⁽¹⁸⁾ Dai, X.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085.

⁽¹⁹⁾ Dyason, J. C.; Engelhardt, L. M.; Healy, P. C.; Pakawatchai, C. P.; White, A. H. *Inorg. Chem.* **1985**, *24*, 1950.

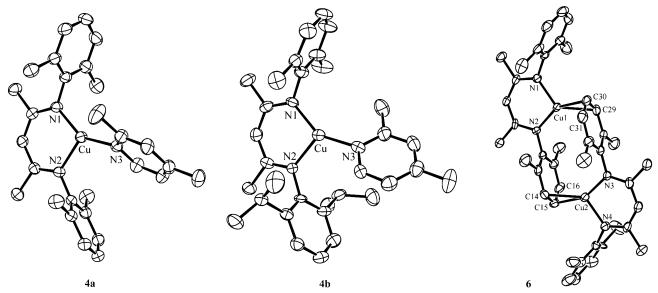


Figure 1. X-ray structures of β -diketiminato Cu(I) complexes 4a, 4b, and 6 (only one unique {[Me₂NN]Cu}₂ dimer is shown).

[Me₂NN]Cu fragment of **6**. The inequivalent Cu–C(arene) distances at each Cu center (Cu1–C30 2.103(5) Å, Cu1–C29 2.204(5) Å; Cu2–C15 2.069(5) Å, Cu2–C14 2.242(5) Å; Cu3–C57A' 2.12(2) Å, Cu3–C58A' 2.26(2) Å) indicate a less-symmetric binding of the arene than observed in Sadighi's electron-poor [NN]Cu(η^2 -benzene) possessing 3,5-(CF₃)₂C₆H₃ *N*-aryl and CF₃ backbone substituents (Cu–C 2.117(4) and 2.102(4) Å).¹⁶ Dissolution of **6** in benezene-*d*₆ gives a *C*_{2*v*}-symmetric NMR spectrum identical to that of [Me₂NN]Cu(toluene)¹⁸ with the absence of resonances due to free toluene.

Scouting runs of styrene aziridination with PhI=NTs catalyzed by 5 mol % **4a** in benzene, dichloromethane, and acetonitrile identified the latter as the best solvent as judged by the short time (ca. 20 min) required for consumption of insoluble PhI=NTs. It should be noted that the solvento species [RMeNN]Cu(NCMe)¹⁵ are likely present in room temperature acetonitrile- d_3 solutions of **4** as the lutidine *o*-H resonance appears at δ 7.94 and 8.04 ppm for **4a** and **4b**, respectively, approaching the expected value for free lutidine in this solvent (δ 8.31 ppm).

In the aziridination of eight different olefins with PhI= NTs using 3 equiv of olefin catalyzed by 5 mol % **4a** in acetonitrile, styrene, *trans-* β -methylstyrene, and cyclooctene gave the highest yields (Table 1). The use of the somewhat larger **4b** marginally increased the yield of *N*-tosyl aziridines derived from these three alkenes. Other substrates surveyed under these conditions with **4a** included the aromatic alkenes α -methylstyrene and *cis*-stilbene which gave poor yields (<10%), and the aliphatic alkenes 1-hexene, *cis*-2-octene, and cyclohexene which gave marginally higher yields (10– 30%).

Further decreasing the alkene/PhI=NTs ratio to 1:1 with styrene, *trans-\beta*-methylstyrene, and cyclooctene still resulted in aziridine formation, albeit in lower yields (47–58%) (Table 1). The decreased yield results in the increased formation of the byproduct amine H₂NTs which forms in near quantitative yield in the absence of added olefin. The

catalyst	alkene	alkene : PhI=NTs	aziridine	yield (%)
4 a		3:1	Ts	59
4 a	<u> </u>	1:1	Ts N	47
4b	Ph	3:1	Δ	75
4b		1:1	Ph	68
4 a	1	3:1	Ţş	68
4 a		1:1	N	58
4b	Ph	3:1	~~~	74
4b	111	1:1	Ph	55
4 a		3:1	Ts N	85
4a		1:1	\square	58
4b		3:1		96
4b	\searrow	1:1	\searrow	52

Table 1. Alkene Aziridination with PhI=NTs Catalyzed by 4a and 4b^a

^a Conditions: 0.1393 mmol of PhI=NTs, 5 mol % 4a or 4b in 2 mL of acetonitrile. Yields determined by GC.

effect of catalyst loading on styrene aziridination was also investigated. Decreasing the amount of **4b** to 2.5 and 1.25 mol % (styrene/PhI=NTs = 1) resulted in a decrease in aziridine yield to 61% and 28%, respectively. At the lowest loading, the PhI=NTs reagent was no longer completely consumed, indicating enhanced susceptibility to catalyst decomposition pathways.

In summary, this system allows the use of a low alkene/ PhI=NTs ratio to achieve acceptable aziridination yields with styrene, *trans-* β -methylstyrene, and cyclooctene. Furthermore, details involving the solution behavior of this β -diketiminato catalyst system may be important in understanding interactions with alternative, soluble nitrene transfer reagents. Studies with organoazides, which could potentially yield a diverse range of *N*-substituted aziridines, are underway and will be reported in due course.

Acknowledgment. T.H.W. thanks the ACS Petroleum Research Fund (Type-G) and the NSF CAREER program (CHE-0135057) for generous support of this work.

Supporting Information Available: Experimental and computational details (PDF) and X-ray crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

IC048968+